Convex function: Let \( X \subset \mathbb{R}^n \) be a convex set. Assume that the function \( f: X \rightarrow \mathbb{R} \) is continuous, then \( f \) is said to be convex if $$f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2) $$ for all \( x_1, x_2 \in X \) and for all \( t \in [0,1] \). If \( \leq \) is replaced with a strict inequaltiy in the definition, we demand \( x_1 \neq x_2 \) and \( t\in(0,1) \) then \( f \) is said to be strictly convex. For a single variable function, convexity means that if you draw a straight line connecting \( f(x_1) \) and \( f(x_2) \), the value of the function on the interval \( [x_1,x_2] \) is always below the line as illustrated below.