Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

The Hessian matrix

The Hessian matrix of C(\beta) is given by \hat{H} \equiv \begin{bmatrix} \frac{\partial^2 C(\beta)}{\partial \beta_0^2} & \frac{\partial^2 C(\beta)}{\partial \beta_0 \partial \beta_1} \\ \frac{\partial^2 C(\beta)}{\partial \beta_0 \partial \beta_1} & \frac{\partial^2 C(\beta)}{\partial \beta_1^2} & \\ \end{bmatrix} = 2X^T X. This result implies that C(\beta) is a convex function since the matrix X^T X always is positive semi-definite.