And a corresponding example using scikit-learn

# Importing various packages
from random import random, seed
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import SGDRegressor

x = 2*np.random.rand(100,1)
y = 4+3*x+np.random.randn(100,1)

xb = np.c_[np.ones((100,1)), x]
beta_linreg = np.linalg.inv(xb.T.dot(xb)).dot(xb.T).dot(y)
print(beta_linreg)
sgdreg = SGDRegressor(n_iter = 50, penalty=None, eta0=0.1)
sgdreg.fit(x,y.ravel())
print(sgdreg.intercept_, sgdreg.coef_)