Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

The derivative of the cost/loss function

Computing \partial C(\beta) / \partial \beta_0 and \partial C(\beta) / \partial \beta_1 we can show that the gradient can be written as \nabla_{\beta} C(\beta) = (\partial C(\beta) / \partial \beta_0, \partial C(\beta) / \partial \beta_1)^T = 2\begin{bmatrix} \sum_{i=1}^{100} \left(\beta_0+\beta_1x_i-y_i\right) \\ \sum_{i=1}^{100}\left( x_i (\beta_0+\beta_1x_i)-y_ix_i\right) \\ \end{bmatrix} = 2X^T(X\beta - \mathbf{y}), where X is the design matrix defined above.