Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Introducing the energy model

As we will see below, a typical Boltzmann machines employs a probability distribution

p(\boldsymbol{x},\boldsymbol{h};\boldsymbol{\Theta}) = \frac{f(\boldsymbol{x},\boldsymbol{h};\boldsymbol{\Theta})}{Z(\boldsymbol{\Theta})},

where f(\boldsymbol{x},\boldsymbol{h};\boldsymbol{\Theta}) is given by a so-called energy model. If we assume that the random variables x_i and h_j take binary values only, for example x_i,h_j=\{0,1\} , we have a so-called binary-binary model where

f(\boldsymbol{x},\boldsymbol{h};\boldsymbol{\Theta})=-E(\boldsymbol{x}, \boldsymbol{h};\boldsymbol{\Theta}) = \sum_{x_i\in \boldsymbol{X}} x_i a_i+\sum_{h_j\in \boldsymbol{H}} b_j h_j + \sum_{x_i\in \boldsymbol{X},h_j\in\boldsymbol{H}} x_i w_{ij} h_j,

where the set of parameters are given by the biases and weights \boldsymbol{\Theta}=\{\boldsymbol{a},\boldsymbol{b},\boldsymbol{W}\} . Note the vector notation instead of x_i and h_j for f . The vectors \boldsymbol{x} and \boldsymbol{h} represent a specific instance of stochastic variables x_i and h_j . These arrangements of \boldsymbol{x} and \boldsymbol{h} lead to a specific energy configuration.