Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Kullback-Leibler relative entropy

When the goal of the training is to approximate a probability distribution, as it is in generative modeling, another relevant measure is the Kullback-Leibler divergence, also known as the relative entropy or Shannon entropy. It is a non-symmetric measure of the dissimilarity between two probability density functions p and q . If p is the unkown probability which we approximate with q , we can measure the difference by

\begin{align*} \text{KL}(p||q) = \int_{-\infty}^{\infty} p (\boldsymbol{x}) \log \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} d\boldsymbol{x}. \end{align*}