The conditional probability of the continuous \( \boldsymbol{x} \) now has another form, however.
$$ \begin{align*} p_{GB} (\boldsymbol{x}|\boldsymbol{h}) =& \frac{p_{GB} (\boldsymbol{x}, \boldsymbol{h})}{p_{GB} (\boldsymbol{h})} \nonumber \\ =& \frac{\frac{1}{Z_{GB}} e^{-\vert\vert\frac{\boldsymbol{x} -\boldsymbol{a}}{2\boldsymbol{\sigma}}\vert\vert^2 + \boldsymbol{b}^T \boldsymbol{h} + (\frac{\boldsymbol{x}}{\boldsymbol{\sigma}^2})^T \boldsymbol{W}\boldsymbol{h}}} {\frac{1}{Z_{GB}} e^{\boldsymbol{b}^T \boldsymbol{h}} \prod_i^M \sqrt{2\pi \sigma_i^2} e^{\frac{2a_i \boldsymbol{w}_{i\ast}^T \boldsymbol{h} +(\boldsymbol{w}_{i\ast}^T \boldsymbol{h})^2 }{2\sigma_i^2}}} \nonumber \\ =& \prod_i^M \frac{1}{\sqrt{2\pi \sigma_i^2}} \frac{e^{- \frac{(x_i - a_i)^2}{2\sigma_i^2} + \frac{x_i \boldsymbol{w}_{i\ast}^T \boldsymbol{h}}{2\sigma_i^2} }} {e^{\frac{2a_i \boldsymbol{w}_{i\ast}^T \boldsymbol{h} +(\boldsymbol{w}_{i\ast}^T \boldsymbol{h})^2 }{2\sigma_i^2}}} \nonumber \\ =& \prod_i^M \frac{1}{\sqrt{2\pi \sigma_i^2}} \frac{e^{-\frac{x_i^2 - 2a_i x_i + a_i^2 - 2x_i \boldsymbol{w}_{i\ast}^T\boldsymbol{h} }{2\sigma_i^2} } } {e^{\frac{2a_i \boldsymbol{w}_{i\ast}^T \boldsymbol{h} +(\boldsymbol{w}_{i\ast}^T \boldsymbol{h})^2 }{2\sigma_i^2}}} \nonumber \\ =& \prod_i^M \frac{1}{\sqrt{2\pi \sigma_i^2}} e^{- \frac{x_i^2 - 2a_i x_i + a_i^2 - 2x_i \boldsymbol{w}_{i\ast}^T\boldsymbol{h} + 2a_i \boldsymbol{w}_{i\ast}^T \boldsymbol{h} +(\boldsymbol{w}_{i\ast}^T \boldsymbol{h})^2} {2\sigma_i^2} } \nonumber \\ =& \prod_i^M \frac{1}{\sqrt{2\pi \sigma_i^2}} e^{ - \frac{(x_i - b_i - \boldsymbol{w}_{i\ast}^T \boldsymbol{h})^2}{2\sigma_i^2}} \nonumber \\ =& \prod_i^M \mathcal{N} (x_i | b_i + \boldsymbol{w}_{i\ast}^T \boldsymbol{h}, \sigma_i^2) \\ \Rightarrow p_{GB} (x_i|\boldsymbol{h}) =& \mathcal{N} (x_i | b_i + \boldsymbol{w}_{i\ast}^T \boldsymbol{h}, \sigma_i^2) . \end{align*} $$