The Slater determinant takes the form
$$ \Phi(\mathbf{r}_1,\mathbf{r}_2,,\mathbf{r}_3,\mathbf{r}_4, \alpha,\beta,\gamma,\delta)=\frac{1}{\sqrt{4!}} \left| \begin{array}{cccc} \psi_{100\uparrow}(\mathbf{r}_1)& \psi_{100\uparrow}(\mathbf{r}_2)& \psi_{100\uparrow}(\mathbf{r}_3)&\psi_{100\uparrow}(\mathbf{r}_4) \\ \psi_{100\downarrow}(\mathbf{r}_1)& \psi_{100\downarrow}(\mathbf{r}_2)& \psi_{100\downarrow}(\mathbf{r}_3)&\psi_{100\downarrow}(\mathbf{r}_4) \\ \psi_{200\uparrow}(\mathbf{r}_1)& \psi_{200\uparrow}(\mathbf{r}_2)& \psi_{200\uparrow}(\mathbf{r}_3)&\psi_{200\uparrow}(\mathbf{r}_4) \\ \psi_{200\downarrow}(\mathbf{r}_1)& \psi_{200\downarrow}(\mathbf{r}_2)& \psi_{200\downarrow}(\mathbf{r}_3)&\psi_{200\downarrow}(\mathbf{r}_4) \end{array} \right|. $$The Slater determinant as written is zero since the spatial wave functions for the spin up and spin down states are equal. But we can rewrite it as the product of two Slater determinants, one for spin up and one for spin down.