Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Efficient calculation of Slater determinants

If the new position \mathbf{r}^{\mathrm{new}} is accepted, then the inverse matrix can by suitably updated by an algorithm having a time scaling of O(N^2) . This algorithm goes as follows. First we update all but the i-th column of \hat{D}^{-1} . For each column j\neq i , we first calculate the quantity:

\begin{equation} S_j = (\hat{D}(\mathbf{r}^{\mathrm{new}})\times \hat{D}^{-1}(\mathbf{r}^{\mathrm{old}}))_{ij} = \sum_{l=1}^N d_{il}(\mathbf{r}^{\mathrm{new}})\, d^{-1}_{lj}(\mathbf{r}^{\mathrm{old}}) \tag{7} \end{equation}