Squared wave function

If we assume the wavefunction to be positive definite, however, we can use the RBM to represent the squared wavefunction, and thereby a probability. This also makes it possible to sample from the model using Gibbs sampling, because we can obtain the conditional probabilities.

$$ \begin{align*} |\Psi (\mathbf{X})|^2 &= F_{rbm}(\mathbf{X}) \\ \Rightarrow \Psi (\mathbf{X}) &= \sqrt{F_{rbm}(\mathbf{X})} \\ &= \frac{1}{\sqrt{Z}}\sqrt{\sum_{\{h_j\}} e^{-E(\mathbf{X}, \mathbf{h})}} \\ &= \frac{1}{\sqrt{Z}} \sqrt{\sum_{\{h_j\}} e^{-\sum_i^M \frac{(X_i - a_i)^2}{2\sigma^2} + \sum_j^N b_j h_j + \sum_{i,j}^{M,N} \frac{X_i w_{ij} h_j}{\sigma^2}} }\\ &= \frac{1}{\sqrt{Z}} e^{-\sum_i^M \frac{(X_i - a_i)^2}{4\sigma^2}} \sqrt{\sum_{\{h_j\}} \prod_j^N e^{b_j h_j + \sum_i^M \frac{X_i w_{ij} h_j}{\sigma^2}}} \\ &= \frac{1}{\sqrt{Z}} e^{-\sum_i^M \frac{(X_i - a_i)^2}{4\sigma^2}} \sqrt{\prod_j^N \sum_{h_j} e^{b_j h_j + \sum_i^M \frac{X_i w_{ij} h_j}{\sigma^2}}} \\ &= \frac{1}{\sqrt{Z}} e^{-\sum_i^M \frac{(X_i - a_i)^2}{4\sigma^2}} \prod_j^N \sqrt{e^0 + e^{b_j + \sum_i^M \frac{X_i w_{ij}}{\sigma^2}}} \\ &= \frac{1}{\sqrt{Z}} e^{-\sum_i^M \frac{(X_i - a_i)^2}{4\sigma^2}} \prod_j^N \sqrt{1 + e^{b_j + \sum_i^M \frac{X_i w_{ij}}{\sigma^2}}} \\ \end{align*} $$