Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Efficient calculation of Slater determinants

Consider the ratio, which we shall call R , between \vert\hat{D}(\mathbf{r}^{\mathrm{new}})\vert and \vert\hat{D}(\mathbf{r}^{\mathrm{old}})\vert . By definition, each of these determinants can individually be expressed in terms of the i-th row of its cofactor matrix

\begin{equation} R\equiv\frac{\vert\hat{D}(\mathbf{r}^{\mathrm{new}})\vert} {\vert\hat{D}(\mathbf{r}^{\mathrm{old}})\vert} = \frac{\sum_{j=1}^N d_{ij}(\mathbf{r}^{\mathrm{new}})\, C_{ij}(\mathbf{r}^{\mathrm{new}})} {\sum_{j=1}^N d_{ij}(\mathbf{r}^{\mathrm{old}})\, C_{ij}(\mathbf{r}^{\mathrm{old}})} \tag{3} \end{equation}