A Frequentist approach to data analysis

When you hear phrases like predictions and estimations and correlations and causations, what do you think of? May be you think of the difference between classifying new data points and generating new data points. Or perhaps you consider that correlations represent some kind of symmetric statements like if \( A \) is correlated with \( B \), then \( B \) is correlated with \( A \). Causation on the other hand is directional, that is if \( A \) causes \( B \), \( B \) does not necessarily cause \( A \).

These concepts are in some sense the difference between machine learning and statistics. In machine learning and prediction based tasks, we are often interested in developing algorithms that are capable of learning patterns from given data in an automated fashion, and then using these learned patterns to make predictions or assessments of newly given data. In many cases, our primary concern is the quality of the predictions or assessments, and we are less concerned about the underlying patterns that were learned in order to make these predictions.

In machine learning we normally use a so-called frequentist approach, where the aim is to make predictions and find correlations. We focus less on for example extracting a probability distribution function (PDF). The PDF can be used in turn to make estimations and find causations such as given \( A \) what is the likelihood of finding \( B \).