If we then introduce the matrix
$$ \boldsymbol{H} = \left(\boldsymbol{A}^T\boldsymbol{A}\right)^{-1}, $$we have then the following expression for the parameters \( \beta_j \) (the matrix elements of \( \boldsymbol{H} \) are \( h_{ij} \))
$$ \beta_j = \sum_{k=0}^{p-1}h_{jk}\sum_{i=0}^{n-1}\frac{y_i}{\sigma_i}\frac{x_{ik}}{\sigma_i} = \sum_{k=0}^{p-1}h_{jk}\sum_{i=0}^{n-1}b_ia_{ik} $$We state without proof the expression for the uncertainty in the parameters \( \beta_j \) as (we leave this as an exercise)
$$ \sigma^2(\beta_j) = \sum_{i=0}^{n-1}\sigma_i^2\left( \frac{\partial \beta_j}{\partial y_i}\right)^2, $$resulting in
$$ \sigma^2(\beta_j) = \left(\sum_{k=0}^{p-1}h_{jk}\sum_{i=0}^{n-1}a_{ik}\right)\left(\sum_{l=0}^{p-1}h_{jl}\sum_{m=0}^{n-1}a_{ml}\right) = h_{jj}! $$