If we then introduce the matrix
\boldsymbol{H} = \left(\boldsymbol{A}^T\boldsymbol{A}\right)^{-1},we have then the following expression for the parameters \beta_j (the matrix elements of \boldsymbol{H} are h_{ij} )
\beta_j = \sum_{k=0}^{p-1}h_{jk}\sum_{i=0}^{n-1}\frac{y_i}{\sigma_i}\frac{x_{ik}}{\sigma_i} = \sum_{k=0}^{p-1}h_{jk}\sum_{i=0}^{n-1}b_ia_{ik}We state without proof the expression for the uncertainty in the parameters \beta_j as (we leave this as an exercise)
\sigma^2(\beta_j) = \sum_{i=0}^{n-1}\sigma_i^2\left( \frac{\partial \beta_j}{\partial y_i}\right)^2,resulting in
\sigma^2(\beta_j) = \left(\sum_{k=0}^{p-1}h_{jk}\sum_{i=0}^{n-1}a_{ik}\right)\left(\sum_{l=0}^{p-1}h_{jl}\sum_{m=0}^{n-1}a_{ml}\right) = h_{jj}!