Interpretations and optimizing our parameters

The residuals \( \boldsymbol{\epsilon} \) are in turn given by

$$ \boldsymbol{\epsilon} = \boldsymbol{y}-\boldsymbol{\tilde{y}} = \boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}, $$

and with

$$ \boldsymbol{X}^T\left( \boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)= 0, $$

we have

$$ \boldsymbol{X}^T\boldsymbol{\epsilon}=\boldsymbol{X}^T\left( \boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)= 0, $$

meaning that the solution for \( \boldsymbol{\beta} \) is the one which minimizes the residuals. Later we will link this with the maximum likelihood approach.

Let us now return to our nuclear binding energies and simply code the above equations.