The code

# Common imports
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
import sklearn.linear_model as skl
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error

# Where to save the figures and data files
PROJECT_ROOT_DIR = "Results"
FIGURE_ID = "Results/FigureFiles"
DATA_ID = "DataFiles/"

if not os.path.exists(PROJECT_ROOT_DIR):
    os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(FIGURE_ID):
    os.makedirs(FIGURE_ID)

if not os.path.exists(DATA_ID):
    os.makedirs(DATA_ID)

def image_path(fig_id):
    return os.path.join(FIGURE_ID, fig_id)

def data_path(dat_id):
    return os.path.join(DATA_ID, dat_id)

def save_fig(fig_id):
    plt.savefig(image_path(fig_id) + ".png", format='png')

infile = open(data_path("EoS.csv"),'r')

# Read the EoS data as  csv file and organize the data into two arrays with density and energies
EoS = pd.read_csv(infile, names=('Density', 'Energy'))
EoS['Energy'] = pd.to_numeric(EoS['Energy'], errors='coerce')
EoS = EoS.dropna()
Energies = EoS['Energy']
Density = EoS['Density']
#  The design matrix now as function of various polytrops
X = np.zeros((len(Density),4))
X[:,3] = Density**(4.0/3.0)
X[:,2] = Density
X[:,1] = Density**(2.0/3.0)
X[:,0] = 1

# We use now Scikit-Learn's linear regressor and ridge regressor
# OLS part
clf = skl.LinearRegression().fit(X, Energies)
ytilde = clf.predict(X)
EoS['Eols']  = ytilde
# The mean squared error                               
print("Mean squared error: %.2f" % mean_squared_error(Energies, ytilde))
# Explained variance score: 1 is perfect prediction                                 
print('Variance score: %.2f' % r2_score(Energies, ytilde))
# Mean absolute error                                                           
print('Mean absolute error: %.2f' % mean_absolute_error(Energies, ytilde))
print(clf.coef_, clf.intercept_)

# The Ridge regression with a hyperparameter lambda = 0.1
_lambda = 0.1
clf_ridge = skl.Ridge(alpha=_lambda).fit(X, Energies)
yridge = clf_ridge.predict(X)
EoS['Eridge']  = yridge
# The mean squared error                               
print("Mean squared error: %.2f" % mean_squared_error(Energies, yridge))
# Explained variance score: 1 is perfect prediction                                 
print('Variance score: %.2f' % r2_score(Energies, yridge))
# Mean absolute error                                                           
print('Mean absolute error: %.2f' % mean_absolute_error(Energies, yridge))
print(clf_ridge.coef_, clf_ridge.intercept_)

fig, ax = plt.subplots()
ax.set_xlabel(r'$\rho[\mathrm{fm}^{-3}]$')
ax.set_ylabel(r'Energy per particle')
ax.plot(EoS['Density'], EoS['Energy'], alpha=0.7, lw=2,
            label='Theoretical data')
ax.plot(EoS['Density'], EoS['Eols'], alpha=0.7, lw=2, c='m',
            label='OLS')
ax.plot(EoS['Density'], EoS['Eridge'], alpha=0.7, lw=2, c='g',
            label='Ridge $\lambda = 0.1$')
ax.legend()
save_fig("EoSfitting")
plt.show()

The above simple polynomial in density \( \rho \) gives an excellent fit to the data.

We note also that there is a small deviation between the standard OLS and the Ridge regression at higher densities. We discuss this in more detail below.