With the above we use the design matrix to define the approximation \( \boldsymbol{\tilde{y}} \) via the unknown quantity \( \boldsymbol{\beta} \) as
$$ \boldsymbol{\tilde{y}}= \boldsymbol{X}\boldsymbol{\beta}, $$and in order to find the optimal parameters \( \beta_i \) instead of solving the above linear algebra problem, we define a function which gives a measure of the spread between the values \( y_i \) (which represent hopefully the exact values) and the parameterized values \( \tilde{y}_i \), namely
$$ C(\boldsymbol{\beta})=\frac{1}{n}\sum_{i=0}^{n-1}\left(y_i-\tilde{y}_i\right)^2=\frac{1}{n}\left\{\left(\boldsymbol{y}-\boldsymbol{\tilde{y}}\right)^T\left(\boldsymbol{y}-\boldsymbol{\tilde{y}}\right)\right\}, $$or using the matrix \( \boldsymbol{X} \) and in a more compact matrix-vector notation as
$$ C(\boldsymbol{\beta})=\frac{1}{n}\left\{\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)^T\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)\right\}. $$This function is one possible way to define the so-called cost function.
It is also common to define the function \( C \) as
$$ C(\boldsymbol{\beta})=\frac{1}{2n}\sum_{i=0}^{n-1}\left(y_i-\tilde{y}_i\right)^2, $$since when taking the first derivative with respect to the unknown parameters \( \beta \), the factor of \( 2 \) cancels out.