We can rewrite
$$ \frac{\partial \chi^2(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0 = \boldsymbol{A}^T\left( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\theta}\right), $$as
$$ \boldsymbol{A}^T\boldsymbol{b} = \boldsymbol{A}^T\boldsymbol{A}\boldsymbol{\theta}, $$and if the matrix \( \boldsymbol{A}^T\boldsymbol{A} \) is invertible we have the solution
$$ \boldsymbol{\theta} =\left(\boldsymbol{A}^T\boldsymbol{A}\right)^{-1}\boldsymbol{A}^T\boldsymbol{b}. $$