Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

The \chi^2 function

In order to find the parameters \beta_i we will then minimize the spread of \chi^2(\boldsymbol{\beta}) by requiring

\frac{\partial \chi^2(\boldsymbol{\beta})}{\partial \beta_j} = \frac{\partial }{\partial \beta_j}\left[ \frac{1}{n}\sum_{i=0}^{n-1}\left(\frac{y_i-\beta_0x_{i,0}-\beta_1x_{i,1}-\beta_2x_{i,2}-\dots-\beta_{n-1}x_{i,n-1}}{\sigma_i}\right)^2\right]=0,

which results in

\frac{\partial \chi^2(\boldsymbol{\beta})}{\partial \beta_j} = -\frac{2}{n}\left[ \sum_{i=0}^{n-1}\frac{x_{ij}}{\sigma_i}\left(\frac{y_i-\beta_0x_{i,0}-\beta_1x_{i,1}-\beta_2x_{i,2}-\dots-\beta_{n-1}x_{i,n-1}}{\sigma_i}\right)\right]=0,

or in a matrix-vector form as

\frac{\partial \chi^2(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 = \boldsymbol{A}^T\left( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\beta}\right).

where we have defined the matrix \boldsymbol{A} =\boldsymbol{X}/\boldsymbol{\Sigma} with matrix elements a_{ij} = x_{ij}/\sigma_i and the vector \boldsymbol{b} with elements b_i = y_i/\sigma_i .