The \( \chi^2 \) function

We can rewrite

$$ \frac{\partial \chi^2(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 = \boldsymbol{A}^T\left( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\beta}\right), $$

as

$$ \boldsymbol{A}^T\boldsymbol{b} = \boldsymbol{A}^T\boldsymbol{A}\boldsymbol{\beta}, $$

and if the matrix \( \boldsymbol{A}^T\boldsymbol{A} \) is invertible we have the solution

$$ \boldsymbol{\beta} =\left(\boldsymbol{A}^T\boldsymbol{A}\right)^{-1}\boldsymbol{A}^T\boldsymbol{b}. $$