We can rewrite
\frac{\partial \chi^2(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 = \boldsymbol{A}^T\left( \boldsymbol{b}-\boldsymbol{A}\boldsymbol{\beta}\right),as
\boldsymbol{A}^T\boldsymbol{b} = \boldsymbol{A}^T\boldsymbol{A}\boldsymbol{\beta},and if the matrix \boldsymbol{A}^T\boldsymbol{A} is invertible we have the solution
\boldsymbol{\beta} =\left(\boldsymbol{A}^T\boldsymbol{A}\right)^{-1}\boldsymbol{A}^T\boldsymbol{b}.