General linear models and linear algebra

Before we proceed let us study a case where we aim at fitting a set of data \( \boldsymbol{y}=[y_0,y_1,\dots,y_{n-1}] \). We could think of these data as a result of an experiment or a complicated numerical experiment. These data are functions of a series of variables \( \boldsymbol{x}=[x_0,x_1,\dots,x_{n-1}] \), that is \( y_i = y(x_i) \) with \( i=0,1,2,\dots,n-1 \). The variables \( x_i \) could represent physical quantities like time, temperature, position etc. We assume that \( y(x) \) is a smooth function.

Since obtaining these data points may not be trivial, we want to use these data to fit a function which can allow us to make predictions for values of \( y \) which are not in the present set. The perhaps simplest approach is to assume we can parametrize our function in terms of a polynomial of degree \( n-1 \) with \( n \) points, that is

$$ y=y(x) \rightarrow y(x_i)=\tilde{y}_i+\epsilon_i=\sum_{j=0}^{n-1} \beta_j x_i^j+\epsilon_i, $$

where \( \epsilon_i \) is the error in our approximation.