The first step here is to approximate the function y with a first-order polynomial, that is we write
y=y(x) \rightarrow y(x_i) \approx \beta_0+\beta_1 x_i.By computing the derivatives of \chi^2 with respect to \beta_0 and \beta_1 show that these are given by
\frac{\partial \chi^2(\boldsymbol{\beta})}{\partial \beta_0} = -2\left[ \frac{1}{n}\sum_{i=0}^{n-1}\left(\frac{y_i-\beta_0-\beta_1x_{i}}{\sigma_i^2}\right)\right]=0,and
\frac{\partial \chi^2(\boldsymbol{\beta})}{\partial \beta_1} = -\frac{2}{n}\left[ \sum_{i=0}^{n-1}x_i\left(\frac{y_i-\beta_0-\beta_1x_{i}}{\sigma_i^2}\right)\right]=0.