The quantity \( p(Y\vert X) \) on the right-hand side of the theorem is evaluated for the observed data \( Y \) and can be viewed as a function of the parameter space represented by \( X \). This function is not necesseraly normalized and is normally called the likelihood function.
The function \( p(X) \) on the right hand side is called the prior while the function on the left hand side is the called the posterior probability. The denominator on the right hand side serves as a normalization factor for the posterior distribution.
Let us try to illustrate Bayes' theorem through an example.