Example code for Bias-Variance tradeoff

import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression, Ridge, Lasso
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.utils import resample

np.random.seed(2018)

n = 500
n_boostraps = 100
degree = 18  # A quite high value, just to show.
noise = 0.1

# Make data set.
x = np.linspace(-1, 3, n).reshape(-1, 1)
y = np.exp(-x**2) + 1.5 * np.exp(-(x-2)**2) + np.random.normal(0, 0.1, x.shape)

# Hold out some test data that is never used in training.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)

# Combine x transformation and model into one operation.
# Not neccesary, but convenient.
model = make_pipeline(PolynomialFeatures(degree=degree), LinearRegression(fit_intercept=False))

# The following (m x n_bootstraps) matrix holds the column vectors y_pred
# for each bootstrap iteration.
y_pred = np.empty((y_test.shape[0], n_boostraps))
for i in range(n_boostraps):
    x_, y_ = resample(x_train, y_train)

    # Evaluate the new model on the same test data each time.
    y_pred[:, i] = model.fit(x_, y_).predict(x_test).ravel()

# Note: Expectations and variances taken w.r.t. different training
# data sets, hence the axis=1. Subsequent means are taken across the test data
# set in order to obtain a total value, but before this we have error/bias/variance
# calculated per data point in the test set.
# Note 2: The use of keepdims=True is important in the calculation of bias as this 
# maintains the column vector form. Dropping this yields very unexpected results.
error = np.mean( np.mean((y_test - y_pred)**2, axis=1, keepdims=True) )
bias = np.mean( (y_test - np.mean(y_pred, axis=1, keepdims=True))**2 )
variance = np.mean( np.var(y_pred, axis=1, keepdims=True) )
print('Error:', error)
print('Bias^2:', bias)
print('Var:', variance)
print('{} >= {} + {} = {}'.format(error, bias, variance, bias+variance))

plt.plot(x[::5, :], y[::5, :], label='f(x)')
plt.scatter(x_test, y_test, label='Data points')
plt.scatter(x_test, np.mean(y_pred, axis=1), label='Pred')
plt.legend()
plt.show()