Since \( \widehat{\beta} = \widehat{\beta}(\boldsymbol{X}) \) is a function of random variables, \( \widehat{\beta} \) itself must be a random variable. Thus it has a pdf, call this function \( p(\boldsymbol{t}) \). The aim of the bootstrap is to estimate \( p(\boldsymbol{t}) \) by the relative frequency of \( \widehat{\beta} \). You can think of this as using a histogram in the place of \( p(\boldsymbol{t}) \). If the relative frequency closely resembles \( p(\vec{t}) \), then using numerics, it is straight forward to estimate all the interesting parameters of \( p(\boldsymbol{t}) \) using point estimators.