Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

An Illustrative Example, understanding the basics

We can always expand \hat{w}(0) in terms of the right eigenvectors \hat{v} of \hat{W} as \begin{equation*} \hat{w}(0) = \sum_i\alpha_i\hat{v}_i, \end{equation*} resulting in \begin{equation*} \hat{w}(t) = \hat{W}^t\hat{w}(0)=\hat{W}^t\sum_i\alpha_i\hat{v}_i= \sum_i\lambda_i^t\alpha_i\hat{v}_i, \end{equation*} with \lambda_i the i^{\mathrm{th}} eigenvalue corresponding to the eigenvector \hat{v}_i .

If we assume that \lambda_0 is the largest eigenvector we see that in the limit t\rightarrow \infty , \hat{w}(t) becomes proportional to the corresponding eigenvector \hat{v}_0 . This is our steady state or final distribution.