In a similar way we can also define expectation values of functions f(x,t) as \begin{equation*} \langle f(x,t)\rangle = \int_{-\infty}^{\infty}f(x,t)w(x,t)dx. \end{equation*} The normalization condition \begin{equation*} \int_{-\infty}^{\infty}w(x,t)dx=1 \end{equation*} imposes significant constraints on w(x,t) .