With the probability distribution function w(x,t)dx we can evaluate expectation values such as the mean distance \langle x(t)\rangle = \int_{-\infty}^{\infty}xw(x,t)dx, or \langle x^2(t)\rangle = \int_{-\infty}^{\infty}x^2w(x,t)dx, which allows for the computation of the variance \sigma^2=\langle x^2(t)\rangle-\langle x(t)\rangle^2 . Note well that these expectation values are time-dependent.