# Program to test the Metropolis algorithm with one particle at given temp in one dimension
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import random
from math import sqrt, exp, log
# initialize the rng with a seed
random.seed()
# Hard coding of input parameters
MCcycles = 100000
Temperature = 2.0
beta = 1./Temperature
InitialVelocity = -2.0
CurrentVelocity = InitialVelocity
Energy = 0.5*InitialVelocity*InitialVelocity
VelocityRange = 10*sqrt(Temperature)
VelocityStep = 2*VelocityRange/10.
AverageEnergy = Energy
AverageEnergy2 = Energy*Energy
VelocityValues = np.zeros(MCcycles)
# The Monte Carlo sampling with Metropolis starts here
for i in range (1, MCcycles, 1):
TrialVelocity = CurrentVelocity + (2.0*random.random() - 1.0)*VelocityStep
EnergyChange = 0.5*(TrialVelocity*TrialVelocity -CurrentVelocity*CurrentVelocity);
if random.random() <= exp(-beta*EnergyChange):
CurrentVelocity = TrialVelocity
Energy += EnergyChange
VelocityValues[i] = CurrentVelocity
AverageEnergy += Energy
AverageEnergy2 += Energy*Energy
#Final averages
AverageEnergy = AverageEnergy/MCcycles
AverageEnergy2 = AverageEnergy2/MCcycles
Variance = AverageEnergy2 - AverageEnergy*AverageEnergy
print(AverageEnergy, Variance)
n, bins, patches = plt.hist(VelocityValues, 400, facecolor='green')
plt.xlabel('$v$')
plt.ylabel('Velocity distribution P(v)')
plt.title(r'Velocity histogram at $k_BT=2$')
plt.axis([-5, 5, 0, 600])
plt.grid(True)
plt.show()