We derive the probability of the hidden units given the visible units using Bayes' rule (we drop the explicit \( \boldsymbol{\Theta} \) dependence)
$$ \begin{align*} p_{BB} (\boldsymbol{h}|\boldsymbol{x}) =& \frac{p_{BB} (\boldsymbol{x}, \boldsymbol{h})}{p_{BB} (\boldsymbol{x})} \nonumber \\ =& \frac{ \frac{1}{Z_{BB}} e^{\boldsymbol{a}^T \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{h} + \boldsymbol{x}^T \boldsymbol{W} \boldsymbol{h}} } {\frac{1}{Z_{BB}} e^{\boldsymbol{a}^T \boldsymbol{x}} \prod_j^N (1 + e^{b_j + \boldsymbol{x}^T \boldsymbol{w}_{\ast j}})} \nonumber \\ =& \frac{ e^{\boldsymbol{a}^T \boldsymbol{x}} e^{ \sum_j^N (b_j + \boldsymbol{x}^T \boldsymbol{w}_{\ast j} ) h_j} } { e^{\boldsymbol{a}^T \boldsymbol{x}} \prod_j^N (1 + e^{b_j + \boldsymbol{x}^T \boldsymbol{w}_{\ast j}})} \nonumber \\ =& \prod_j^N \frac{ e^{(b_j + \boldsymbol{x}^T \boldsymbol{w}_{\ast j} ) h_j} } {1 + e^{b_j + \boldsymbol{x}^T \boldsymbol{w}_{\ast j}}} \nonumber \\ =& \prod_j^N p_{BB} (h_j| \boldsymbol{x}) . \end{align*} $$