Top-down approach, what we need to code

Final code for the two-electron case

The code here uses the BFGS algorithm but performs now a production run and writes to file all average values of the energy.

# 2-electron VMC code for 2dim quantum dot with importance sampling
# Using gaussian rng for new positions and Metropolis- Hastings 
# Added energy minimization
from math import exp, sqrt
from random import random, seed, normalvariate
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
from scipy.optimize import minimize
import sys
import os

# Where to save data files
PROJECT_ROOT_DIR = "Results"
DATA_ID = "Results/EnergyMin"

if not os.path.exists(PROJECT_ROOT_DIR):
    os.mkdir(PROJECT_ROOT_DIR)

if not os.path.exists(DATA_ID):
    os.makedirs(DATA_ID)

def data_path(dat_id):
    return os.path.join(DATA_ID, dat_id)

outfile = open(data_path("Energies.dat"),'w')


# Trial wave function for the 2-electron quantum dot in two dims
def WaveFunction(r,alpha,beta):
    r1 = r[0,0]**2 + r[0,1]**2
    r2 = r[1,0]**2 + r[1,1]**2
    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    deno = r12/(1+beta*r12)
    return exp(-0.5*alpha*(r1+r2)+deno)

# Local energy  for the 2-electron quantum dot in two dims, using analytical local energy
def LocalEnergy(r,alpha,beta):
    
    r1 = (r[0,0]**2 + r[0,1]**2)
    r2 = (r[1,0]**2 + r[1,1]**2)
    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    deno = 1.0/(1+beta*r12)
    deno2 = deno*deno
    return 0.5*(1-alpha*alpha)*(r1 + r2) +2.0*alpha + 1.0/r12+deno2*(alpha*r12-deno2+2*beta*deno-1.0/r12)

# Derivate of wave function ansatz as function of variational parameters
def DerivativeWFansatz(r,alpha,beta):
    
    WfDer  = np.zeros((2), np.double)
    r1 = (r[0,0]**2 + r[0,1]**2)
    r2 = (r[1,0]**2 + r[1,1]**2)
    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    deno = 1.0/(1+beta*r12)
    deno2 = deno*deno
    WfDer[0] = -0.5*(r1+r2)
    WfDer[1] = -r12*r12*deno2
    return  WfDer

# Setting up the quantum force for the two-electron quantum dot, recall that it is a vector
def QuantumForce(r,alpha,beta):

    qforce = np.zeros((NumberParticles,Dimension), np.double)
    r12 = sqrt((r[0,0]-r[1,0])**2 + (r[0,1]-r[1,1])**2)
    deno = 1.0/(1+beta*r12)
    qforce[0,:] = -2*r[0,:]*alpha*(r[0,:]-r[1,:])*deno*deno/r12
    qforce[1,:] = -2*r[1,:]*alpha*(r[1,:]-r[0,:])*deno*deno/r12
    return qforce
    

# Computing the derivative of the energy and the energy 
def EnergyDerivative(x0):

    
    # Parameters in the Fokker-Planck simulation of the quantum force
    D = 0.5
    TimeStep = 0.05
    # positions
    PositionOld = np.zeros((NumberParticles,Dimension), np.double)
    PositionNew = np.zeros((NumberParticles,Dimension), np.double)
    # Quantum force
    QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
    QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

    energy = 0.0
    DeltaE = 0.0
    alpha = x0[0]
    beta = x0[1]
    EnergyDer = 0.0
    DeltaPsi = 0.0
    DerivativePsiE = 0.0 
    #Initial position
    for i in range(NumberParticles):
        for j in range(Dimension):
            PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)
    wfold = WaveFunction(PositionOld,alpha,beta)
    QuantumForceOld = QuantumForce(PositionOld,alpha, beta)

    #Loop over MC MCcycles
    for MCcycle in range(NumberMCcycles):
        #Trial position moving one particle at the time
        for i in range(NumberParticles):
            for j in range(Dimension):
                PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\
                                       QuantumForceOld[i,j]*TimeStep*D
            wfnew = WaveFunction(PositionNew,alpha,beta)
            QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
            GreensFunction = 0.0
            for j in range(Dimension):
                GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
	                              (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
                                      PositionNew[i,j]+PositionOld[i,j])
      
            GreensFunction = exp(GreensFunction)
            ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
            #Metropolis-Hastings test to see whether we accept the move
            if random() <= ProbabilityRatio:
                for j in range(Dimension):
                    PositionOld[i,j] = PositionNew[i,j]
                    QuantumForceOld[i,j] = QuantumForceNew[i,j]
                wfold = wfnew
        DeltaE = LocalEnergy(PositionOld,alpha,beta)
        DerPsi = DerivativeWFansatz(PositionOld,alpha,beta)
        DeltaPsi += DerPsi
        energy += DeltaE
        DerivativePsiE += DerPsi*DeltaE
            
    # We calculate mean values
    energy /= NumberMCcycles
    DerivativePsiE /= NumberMCcycles
    DeltaPsi /= NumberMCcycles
    EnergyDer  = 2*(DerivativePsiE-DeltaPsi*energy)
    return EnergyDer


# Computing the expectation value of the local energy 
def Energy(x0):
    # Parameters in the Fokker-Planck simulation of the quantum force
    D = 0.5
    TimeStep = 0.05
    # positions
    PositionOld = np.zeros((NumberParticles,Dimension), np.double)
    PositionNew = np.zeros((NumberParticles,Dimension), np.double)
    # Quantum force
    QuantumForceOld = np.zeros((NumberParticles,Dimension), np.double)
    QuantumForceNew = np.zeros((NumberParticles,Dimension), np.double)

    energy = 0.0
    DeltaE = 0.0
    alpha = x0[0]
    beta = x0[1]
    #Initial position
    for i in range(NumberParticles):
        for j in range(Dimension):
            PositionOld[i,j] = normalvariate(0.0,1.0)*sqrt(TimeStep)
    wfold = WaveFunction(PositionOld,alpha,beta)
    QuantumForceOld = QuantumForce(PositionOld,alpha, beta)

    #Loop over MC MCcycles
    for MCcycle in range(NumberMCcycles):
        #Trial position moving one particle at the time
        for i in range(NumberParticles):
            for j in range(Dimension):
                PositionNew[i,j] = PositionOld[i,j]+normalvariate(0.0,1.0)*sqrt(TimeStep)+\
                                       QuantumForceOld[i,j]*TimeStep*D
            wfnew = WaveFunction(PositionNew,alpha,beta)
            QuantumForceNew = QuantumForce(PositionNew,alpha, beta)
            GreensFunction = 0.0
            for j in range(Dimension):
                GreensFunction += 0.5*(QuantumForceOld[i,j]+QuantumForceNew[i,j])*\
	                              (D*TimeStep*0.5*(QuantumForceOld[i,j]-QuantumForceNew[i,j])-\
                                      PositionNew[i,j]+PositionOld[i,j])
      
            GreensFunction = exp(GreensFunction)
            ProbabilityRatio = GreensFunction*wfnew**2/wfold**2
            #Metropolis-Hastings test to see whether we accept the move
            if random() <= ProbabilityRatio:
                for j in range(Dimension):
                    PositionOld[i,j] = PositionNew[i,j]
                    QuantumForceOld[i,j] = QuantumForceNew[i,j]
                wfold = wfnew
        DeltaE = LocalEnergy(PositionOld,alpha,beta)
        energy += DeltaE
        if Printout: 
           outfile.write('%f\n' %(energy/(MCcycle+1.0)))            
    # We calculate mean values
    energy /= NumberMCcycles
    return energy

#Here starts the main program with variable declarations
NumberParticles = 2
Dimension = 2
# seed for rng generator 
seed()
# Monte Carlo cycles for parameter optimization
Printout = False
NumberMCcycles= 10000
# guess for variational parameters
x0 = np.array([0.9,0.2])
# Using Broydens method to find optimal parameters
res = minimize(Energy, x0, method='BFGS', jac=EnergyDerivative, options={'gtol': 1e-4,'disp': True})
x0 = res.x
# Compute the energy again with the optimal parameters and increased number of Monte Cycles
NumberMCcycles= 2**19
Printout = True
FinalEnergy = Energy(x0)
EResult = np.array([FinalEnergy,FinalEnergy])
outfile.close()
#nice printout with Pandas
import pandas as pd
from pandas import DataFrame
data ={'Optimal Parameters':x0, 'Final Energy':EResult}
frame = pd.DataFrame(data)
print(frame)

Note that the minimize function returns the final values for the variable \( \alpha=x0[0] \) and \( \beta=x0[1] \) in the array \( x \).

When we have found the minimum, we use these optimal parameters to perform a production run of energies. The output is in turn written to file and is used, together with resampling methods like the blocking method, to obtain the best possible estimate for the standard deviation. The optimal minimum is, even with our guess, rather close to the exact value of \( 3.0 \) a.u.

Our next step is to use the output values of the energy and perform a blocking analysis of the results in order to get a best possible estimate of the standard deviation.