Resampling methods: Bootstrap approach

But unless there is enough information available about the process that generated \( X_1,X_2,\cdots,X_n \), \( p(x) \) is in general unknown. Therefore, Efron in 1979 asked the question: What if we replace \( p(x) \) by the relative frequency of the observation \( X_i \); if we draw observations in accordance with the relative frequency of the observations, will we obtain the same result in some asymptotic sense? The answer is yes.

Instead of generating the histogram for the relative frequency of the observation \( X_i \), just draw the values \( (X_1^*,X_2^*,\cdots,X_n^*) \) with replacement from the vector \( \hat{X} \).