Statistics, uncorrelated results

In the special case that the measurements of the sample are uncorrelated (equivalently the stochastic variables \( X_i \) are uncorrelated) we have that the off-diagonal elements of the covariance are zero. This gives the following estimate of the sample error:

$$ \mathrm{err}_X^2=\frac{1}{n^2}\sum_{ij} \mathrm{cov}(X_i, X_j) = \frac{1}{n^2} \sum_i \mathrm{var}(X_i), $$

resulting in

$$ \begin{equation} \mathrm{err}_X^2\approx \frac{1}{n^2} \sum_i \mathrm{var}(x)= \frac{1}{n}\mathrm{var}(x) \tag{16} \end{equation} $$

where in the second step we have used Eq. (14). The error of the sample is then just its standard deviation divided by the square root of the number of measurements the sample contains. This is a very useful formula which is easy to compute. It acts as a first approximation to the error, but in numerical experiments, we cannot overlook the always present correlations.