The so-called time-displacement autocorrelation \phi(t) for a quantity \mathbf{M} is given by
\phi(t) = \int dt' \left[\mathbf{M}(t')-\langle \mathbf{M} \rangle\right]\left[\mathbf{M}(t'+t)-\langle \mathbf{M} \rangle\right],which can be rewritten as
\phi(t) = \int dt' \left[\mathbf{M}(t')\mathbf{M}(t'+t)-\langle \mathbf{M} \rangle^2\right],where \langle \mathbf{M} \rangle is the average value and \mathbf{M}(t) its instantaneous value. We can discretize this function as follows, where we used our set of computed values \mathbf{M}(t) for a set of discretized times (our Monte Carlo cycles corresponding to moving all electrons?)
\phi(t) = \frac{1}{t_{\mathrm{max}}-t}\sum_{t'=0}^{t_{\mathrm{max}}-t}\mathbf{M}(t')\mathbf{M}(t'+t) -\frac{1}{t_{\mathrm{max}}-t}\sum_{t'=0}^{t_{\mathrm{max}}-t}\mathbf{M}(t')\times \frac{1}{t_{\mathrm{max}}-t}\sum_{t'=0}^{t_{\mathrm{max}}-t}\mathbf{M}(t'+t). \tag{20}