It is generally not possible to express \( p_{\overline X_n}(x) \) in a closed form given an arbitrary PDF \( p_X^{\phantom X} \) and a number \( n \). But for the limit \( n\to\infty \) it is possible to make an approximation. The very important result is called the central limit theorem. It tells us that as \( n \) goes to infinity, \( p_{\overline X_n}(x) \) approaches a Gaussian distribution whose mean and variance equal the true mean and variance, \( \mu_{X}^{\phantom X} \) and \( \sigma_{X}^{2} \), respectively:
$$ \begin{equation} \lim_{n\to\infty} p_{\overline X_n}(x) = \left(\frac{n}{2\pi\mathrm{var}(X)}\right)^{1/2} e^{-\frac{n(x-\bar x_n)^2}{2\mathrm{var}(X)}} \tag{12} \end{equation} $$