Jackknife code example

from numpy import *
from numpy.random import randint, randn
from time import time

def jackknife(data, stat):
    n = len(data);t = zeros(n); inds = arange(n); t0 = time()
    ## 'jackknifing' by leaving out an observation for each i                                                                                                                      
    for i in range(n):
        t[i] = stat(delete(data,i) )

    # analysis                                                                                                                                                                     
    print("Runtime: %g sec" % (time()-t0)); print("Jackknife Statistics :")
    print("original           bias      std. error")
    print("%8g %14g %15g" % (stat(data),(n-1)*mean(t)/n, (n*var(t))**.5))

    return t


# Returns mean of data samples                                                                                                                                                     
def stat(data):
    return mean(data)


mu, sigma = 100, 15
datapoints = 10000
x = mu + sigma*random.randn(datapoints)
# jackknife returns the data sample                                                                                                                                                
t = jackknife(x, stat)