In the machine a number is represented as \begin{equation} fl(x)= x(1+\epsilon) \tag{7} \end{equation}
where |\epsilon| \leq \epsilon_M and \epsilon is given by the specified precision, 10^{-7} for single and 10^{-16} for double precision, respectively. \epsilon_M is the given precision. In case of a subtraction a=b-c , we have \begin{equation} fl(a)=fl(b)-fl(c) = a(1+\epsilon_a), \tag{8} \end{equation} or \begin{equation} fl(a)=b(1+\epsilon_b)-c(1+\epsilon_c), \tag{9} \end{equation}