The coefficients are given by
\begin{equation*} \mathbf{A}\mathbf{x} = \sum^{n}_{i=1} \alpha_i \mathbf{A} \mathbf{p}_i = \mathbf{b}. \end{equation*}Multiplying with \hat{p}_k^T from the left gives
\begin{equation*} \hat{p}_k^T \hat{A}\hat{x} = \sum^{n}_{i=1} \alpha_i\hat{p}_k^T \hat{A}\hat{p}_i= \hat{p}_k^T \hat{b}, \end{equation*}and we can define the coefficients \alpha_k as
\begin{equation*} \alpha_k = \frac{\hat{p}_k^T \hat{b}}{\hat{p}_k^T \hat{A} \hat{p}_k} \end{equation*}