As an example, suppose we have \( 10 \) data points \( (\mathbf{x}_1,\cdots, \mathbf{x}_{10}) \) and we choose to have \( M=5 \) minibathces, then each minibatch contains two data points. In particular we have \( B_1 = (\mathbf{x}_1,\mathbf{x}_2), \cdots, B_5 = (\mathbf{x}_9,\mathbf{x}_{10}) \). Note that if you choose \( M=1 \) you have only a single batch with all data points and on the other extreme, you may choose \( M=n \) resulting in a minibatch for each datapoint, i.e \( B_k = \mathbf{x}_k \).
The idea is now to approximate the gradient by replacing the sum over all data points with a sum over the data points in one the minibatches picked at random in each gradient descent step
$$ \nabla_{\beta} C(\mathbf{\beta}) = \sum_{i=1}^n \nabla_\beta c_i(\mathbf{x}_i, \mathbf{\beta}) \rightarrow \sum_{i \in B_k}^n \nabla_\beta c_i(\mathbf{x}_i, \mathbf{\beta}). $$