Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Material for the lecture on Monday October 7, 2024

  1. Neural Networks, setting up the basic steps, from the simple perceptron model to the multi-layer perceptron model.
  2. Building our own Feed-forward Neural Network
  1. These lecture notes
  2. Rashcka et al chapter 11
  3. For neural networks we recommend Goodfellow et al chapter 6.
    1. Neural Networks demystified at https://www.youtube.com/watch?v=bxe2T-V8XRs&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU&ab_channel=WelchLabs
  4. Building Neural Networks from scratch at https://www.youtube.com/watch?v=Wo5dMEP_BbI&list=PLQVvvaa0QuDcjD5BAw2DxE6OF2tius3V3&ab_channel=sentdex
  5. Video on Neural Networks at https://www.youtube.com/watch?v=CqOfi41LfDw
  6. Video on the back propagation algorithm at https://www.youtube.com/watch?v=Ilg3gGewQ5U

We also recommend Michael Nielsen's intuitive approach to the neural networks and the universal approximation theorem, see the slides at http://neuralnetworksanddeeplearning.com/chap4.html.