Let us now try to increase our level of ambition and attempt at setting up the equations for a neural network with two input nodes, one hidden layer with two hidden nodes and one output layer with one output node/neuron only (see graph)..
We need to define the following parameters and variables with the input layer (layer \( (0) \)) where we label the nodes \( x_0 \) and \( x_1 \)
$$ x_0 = a_0^{(0)} \wedge x_1 = a_1^{(0)}. $$The hidden layer (layer \( (1) \)) has nodes which yield the outputs \( a_0^{(1)} \) and \( a_1^{(1)} \)) with weight \( \boldsymbol{w} \) and bias \( \boldsymbol{b} \) parameters
$$ w_{ij}^{(1)}=\left\{w_{00}^{(1)},w_{01}^{(1)},w_{10}^{(1)},w_{11}^{(1)}\right\} \wedge b^{(1)}=\left\{b_0^{(1)},b_1^{(1)}\right\}. $$