Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Mathematics of deep learning and neural networks

Neural networks, in its so-called feed-forward form, where each iterations contains a feed-forward stage and a back-propgagation stage, consist of series of affine matrix-matrix and matrix-vector multiplications. The unknown parameters (the so-called biases and weights which deternine the architecture of a neural network), are uptaded iteratively using the so-called back-propagation algorithm. This algorithm corresponds to the so-called reverse mode of automatic differentation.