Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

The ouput layer

Finally, we have the ouput layer given by layer label (2) with output a^{(2)} and weights and biases to be determined given by the variables

w_{i}^{(2)}=\left\{w_{0}^{(2)},w_{1}^{(2)}\right\} \wedge b^{(2)}.

Our output is \tilde{y}=a^{(2)} and we define a generic cost function C(a^{(2)},y;\boldsymbol{\Theta}) where y is the target value (a scalar here). The parameters we need to optimize are given by

\boldsymbol{\Theta}=\left\{w_{00}^{(1)},w_{01}^{(1)},w_{10}^{(1)},w_{11}^{(1)},w_{0}^{(2)},w_{1}^{(2)},b_0^{(1)},b_1^{(1)},b^{(2)}\right\}.