A possible implementation of a neural network

For simplicity, it is assumed that the input is an array \( \boldsymbol{x} = (x_1, \dots, x_N) \) with \( N \) elements. It is at these points the neural network should find \( P \) such that it fulfills (9).

First, the neural network must feed forward the inputs. This means that \( \boldsymbol{x}s \) must be passed through an input layer, a hidden layer and a output layer. The input layer in this case, does not need to process the data any further. The input layer will consist of \( N_{\text{input} } \) neurons, passing its element to each neuron in the hidden layer. The number of neurons in the hidden layer will be \( N_{\text{hidden} } \).