It is also possible to extend the construction of our network into a more general one, allowing the network to contain more than one hidden layers.
The number of neurons within each hidden layer are given as a list of integers in the program below.
import autograd.numpy as np
from autograd import grad, elementwise_grad
import autograd.numpy.random as npr
from matplotlib import pyplot as plt
def sigmoid(z):
return 1/(1 + np.exp(-z))
# The neural network with one input layer and one output layer,
# but with number of hidden layers specified by the user.
def deep_neural_network(deep_params, x):
# N_hidden is the number of hidden layers
# deep_params is a list, len() should be used
N_hidden = len(deep_params) - 1 # -1 since params consists of
# parameters to all the hidden
# layers AND the output layer.
# Assumes input x being an one-dimensional array
num_values = np.size(x)
x = x.reshape(-1, num_values)
# Assume that the input layer does nothing to the input x
x_input = x
# Due to multiple hidden layers, define a variable referencing to the
# output of the previous layer:
x_prev = x_input
## Hidden layers:
for l in range(N_hidden):
# From the list of parameters P; find the correct weigths and bias for this layer
w_hidden = deep_params[l]
# Add a row of ones to include bias
x_prev = np.concatenate((np.ones((1,num_values)), x_prev ), axis = 0)
z_hidden = np.matmul(w_hidden, x_prev)
x_hidden = sigmoid(z_hidden)
# Update x_prev such that next layer can use the output from this layer
x_prev = x_hidden
## Output layer:
# Get the weights and bias for this layer
w_output = deep_params[-1]
# Include bias:
x_prev = np.concatenate((np.ones((1,num_values)), x_prev), axis = 0)
z_output = np.matmul(w_output, x_prev)
x_output = z_output
return x_output
# The trial solution using the deep neural network:
def g_trial_deep(x,params, g0 = 10):
return g0 + x*deep_neural_network(params, x)
# The right side of the ODE:
def g(x, g_trial, gamma = 2):
return -gamma*g_trial
# The same cost function as before, but calls deep_neural_network instead.
def cost_function_deep(P, x):
# Evaluate the trial function with the current parameters P
g_t = g_trial_deep(x,P)
# Find the derivative w.r.t x of the neural network
d_net_out = elementwise_grad(deep_neural_network,1)(P,x)
# Find the derivative w.r.t x of the trial function
d_g_t = elementwise_grad(g_trial_deep,0)(x,P)
# The right side of the ODE
func = g(x, g_t)
err_sqr = (d_g_t - func)**2
cost_sum = np.sum(err_sqr)
return cost_sum / np.size(err_sqr)
# Solve the exponential decay ODE using neural network with one input and one output layer,
# but with specified number of hidden layers from the user.
def solve_ode_deep_neural_network(x, num_neurons, num_iter, lmb):
# num_hidden_neurons is now a list of number of neurons within each hidden layer
# The number of elements in the list num_hidden_neurons thus represents
# the number of hidden layers.
# Find the number of hidden layers:
N_hidden = np.size(num_neurons)
## Set up initial weights and biases
# Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + 1 to include the output layer
P[0] = npr.randn(num_neurons[0], 2 )
for l in range(1,N_hidden):
P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias
# For the output layer
P[-1] = npr.randn(1, num_neurons[-1] + 1 ) # +1 since bias is included
print('Initial cost: %g'%cost_function_deep(P, x))
## Start finding the optimal weights using gradient descent
# Find the Python function that represents the gradient of the cost function
# w.r.t the 0-th input argument -- that is the weights and biases in the hidden and output layer
cost_function_deep_grad = grad(cost_function_deep,0)
# Let the update be done num_iter times
for i in range(num_iter):
# Evaluate the gradient at the current weights and biases in P.
# The cost_grad consist now of N_hidden + 1 arrays; the gradient w.r.t the weights and biases
# in the hidden layers and output layers evaluated at x.
cost_deep_grad = cost_function_deep_grad(P, x)
for l in range(N_hidden+1):
P[l] = P[l] - lmb * cost_deep_grad[l]
print('Final cost: %g'%cost_function_deep(P, x))
return P
def g_analytic(x, gamma = 2, g0 = 10):
return g0*np.exp(-gamma*x)
# Solve the given problem
if __name__ == '__main__':
npr.seed(15)
## Decide the vales of arguments to the function to solve
N = 10
x = np.linspace(0, 1, N)
## Set up the initial parameters
num_hidden_neurons = np.array([10,10])
num_iter = 10000
lmb = 0.001
P = solve_ode_deep_neural_network(x, num_hidden_neurons, num_iter, lmb)
res = g_trial_deep(x,P)
res_analytical = g_analytic(x)
plt.figure(figsize=(10,10))
plt.title('Performance of a deep neural network solving an ODE compared to the analytical solution')
plt.plot(x, res_analytical)
plt.plot(x, res[0,:])
plt.legend(['analytical','dnn'])
plt.ylabel('g(x)')
plt.show()