Setting up the network using Autograd; The full program

Having set up the network, along with the trial solution and cost function, we can now see how the deep neural network performs by comparing the results to the analytical solution.

The analytical solution of our problem is

$$ g(x,t) = \exp(-\pi^2 t)\sin(\pi x) $$

A possible way to implement a neural network solving the PDE, is given below. Be aware, though, that it is fairly slow for the parameters used. A better result is possible, but requires more iterations, and thus longer time to complete.

Indeed, the program below is not optimal in its implementation, but rather serves as an example on how to implement and use a neural network to solve a PDE. Using TensorFlow results in a much better execution time. Try it!

import autograd.numpy as np
from autograd import jacobian,hessian,grad
import autograd.numpy.random as npr
from matplotlib import cm
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import axes3d

## Set up the network

def sigmoid(z):
    return 1/(1 + np.exp(-z))

def deep_neural_network(deep_params, x):
    # x is now a point and a 1D numpy array; make it a column vector
    num_coordinates = np.size(x,0)
    x = x.reshape(num_coordinates,-1)

    num_points = np.size(x,1)

    # N_hidden is the number of hidden layers
    N_hidden = len(deep_params) - 1 # -1 since params consist of parameters to all the hidden layers AND the output layer

    # Assume that the input layer does nothing to the input x
    x_input = x
    x_prev = x_input

    ## Hidden layers:

    for l in range(N_hidden):
        # From the list of parameters P; find the correct weigths and bias for this layer
        w_hidden = deep_params[l]

        # Add a row of ones to include bias
        x_prev = np.concatenate((np.ones((1,num_points)), x_prev ), axis = 0)

        z_hidden = np.matmul(w_hidden, x_prev)
        x_hidden = sigmoid(z_hidden)

        # Update x_prev such that next layer can use the output from this layer
        x_prev = x_hidden

    ## Output layer:

    # Get the weights and bias for this layer
    w_output = deep_params[-1]

    # Include bias:
    x_prev = np.concatenate((np.ones((1,num_points)), x_prev), axis = 0)

    z_output = np.matmul(w_output, x_prev)
    x_output = z_output

    return x_output[0][0]

## Define the trial solution and cost function
def u(x):
    return np.sin(np.pi*x)

def g_trial(point,P):
    x,t = point
    return (1-t)*u(x) + x*(1-x)*t*deep_neural_network(P,point)

# The right side of the ODE:
def f(point):
    return 0.

# The cost function:
def cost_function(P, x, t):
    cost_sum = 0

    g_t_jacobian_func = jacobian(g_trial)
    g_t_hessian_func = hessian(g_trial)

    for x_ in x:
        for t_ in t:
            point = np.array([x_,t_])

            g_t = g_trial(point,P)
            g_t_jacobian = g_t_jacobian_func(point,P)
            g_t_hessian = g_t_hessian_func(point,P)

            g_t_dt = g_t_jacobian[1]
            g_t_d2x = g_t_hessian[0][0]

            func = f(point)

            err_sqr = ( (g_t_dt - g_t_d2x) - func)**2
            cost_sum += err_sqr

    return cost_sum /( np.size(x)*np.size(t) )

## For comparison, define the analytical solution
def g_analytic(point):
    x,t = point
    return np.exp(-np.pi**2*t)*np.sin(np.pi*x)

## Set up a function for training the network to solve for the equation
def solve_pde_deep_neural_network(x,t, num_neurons, num_iter, lmb):
    ## Set up initial weigths and biases
    N_hidden = np.size(num_neurons)

    ## Set up initial weigths and biases

    # Initialize the list of parameters:
    P = [None]*(N_hidden + 1) # + 1 to include the output layer

    P[0] = npr.randn(num_neurons[0], 2 + 1 ) # 2 since we have two points, +1 to include bias
    for l in range(1,N_hidden):
        P[l] = npr.randn(num_neurons[l], num_neurons[l-1] + 1) # +1 to include bias

    # For the output layer
    P[-1] = npr.randn(1, num_neurons[-1] + 1 ) # +1 since bias is included

    print('Initial cost: ',cost_function(P, x, t))

    cost_function_grad = grad(cost_function,0)

    # Let the update be done num_iter times
    for i in range(num_iter):
        cost_grad =  cost_function_grad(P, x , t)

        for l in range(N_hidden+1):
            P[l] = P[l] - lmb * cost_grad[l]

    print('Final cost: ',cost_function(P, x, t))

    return P

if __name__ == '__main__':
    ### Use the neural network:
    npr.seed(15)

    ## Decide the vales of arguments to the function to solve
    Nx = 10; Nt = 10
    x = np.linspace(0, 1, Nx)
    t = np.linspace(0,1,Nt)

    ## Set up the parameters for the network
    num_hidden_neurons = [100, 25]
    num_iter = 250
    lmb = 0.01

    P = solve_pde_deep_neural_network(x,t, num_hidden_neurons, num_iter, lmb)

    ## Store the results
    g_dnn_ag = np.zeros((Nx, Nt))
    G_analytical = np.zeros((Nx, Nt))
    for i,x_ in enumerate(x):
        for j, t_ in enumerate(t):
            point = np.array([x_, t_])
            g_dnn_ag[i,j] = g_trial(point,P)

            G_analytical[i,j] = g_analytic(point)

    # Find the map difference between the analytical and the computed solution
    diff_ag = np.abs(g_dnn_ag - G_analytical)
    print('Max absolute difference between the analytical solution and the network: %g'%np.max(diff_ag))

    ## Plot the solutions in two dimensions, that being in position and time

    T,X = np.meshgrid(t,x)

    fig = plt.figure(figsize=(10,10))
    ax = fig.add_suplot(projection='3d')
    ax.set_title('Solution from the deep neural network w/ %d layer'%len(num_hidden_neurons))
    s = ax.plot_surface(T,X,g_dnn_ag,linewidth=0,antialiased=False,cmap=cm.viridis)
    ax.set_xlabel('Time $t$')
    ax.set_ylabel('Position $x$');


    fig = plt.figure(figsize=(10,10))
    ax = fig.add_suplot(projection='3d')
    ax.set_title('Analytical solution')
    s = ax.plot_surface(T,X,G_analytical,linewidth=0,antialiased=False,cmap=cm.viridis)
    ax.set_xlabel('Time $t$')
    ax.set_ylabel('Position $x$');

    fig = plt.figure(figsize=(10,10))
    ax = fig.add_suplot(projection='3d')
    ax.set_title('Difference')
    s = ax.plot_surface(T,X,diff_ag,linewidth=0,antialiased=False,cmap=cm.viridis)
    ax.set_xlabel('Time $t$')
    ax.set_ylabel('Position $x$');

    ## Take some slices of the 3D plots just to see the solutions at particular times
    indx1 = 0
    indx2 = int(Nt/2)
    indx3 = Nt-1

    t1 = t[indx1]
    t2 = t[indx2]
    t3 = t[indx3]

    # Slice the results from the DNN
    res1 = g_dnn_ag[:,indx1]
    res2 = g_dnn_ag[:,indx2]
    res3 = g_dnn_ag[:,indx3]

    # Slice the analytical results
    res_analytical1 = G_analytical[:,indx1]
    res_analytical2 = G_analytical[:,indx2]
    res_analytical3 = G_analytical[:,indx3]

    # Plot the slices
    plt.figure(figsize=(10,10))
    plt.title("Computed solutions at time = %g"%t1)
    plt.plot(x, res1)
    plt.plot(x,res_analytical1)
    plt.legend(['dnn','analytical'])

    plt.figure(figsize=(10,10))
    plt.title("Computed solutions at time = %g"%t2)
    plt.plot(x, res2)
    plt.plot(x,res_analytical2)
    plt.legend(['dnn','analytical'])

    plt.figure(figsize=(10,10))
    plt.title("Computed solutions at time = %g"%t3)
    plt.plot(x, res3)
    plt.plot(x,res_analytical3)
    plt.legend(['dnn','analytical'])

    plt.show()