Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Parameters to train, common settings

With parameter sharing, the convolution involves thus for each filter F\times F\times D_1 weights plus one bias parameter.

In total we have

\left(F\times F\times D_1\right) \times K+K_{\mathrm{biases}},

parameters to train by back propagation.

It is common to let K come in powers of 2 , that is 32 , 64 , 128 etc.

  1. \begin{array}{c} F=3 & S=1 & P=1 \end{array}
  2. \begin{array}{c} F=5 & S=1 & P=2 \end{array}
  3. \begin{array}{c} F=5 & S=2 & P=\mathrm{open} \end{array}
  4. \begin{array}{c} F=1 & S=1 & P=0 \end{array}