Using forward Euler to solve the ODE

A straightforward way of solving an ODE numerically, is to use Euler's method.

Euler's method uses Taylor series to approximate the value at a function \( f \) at a step \( \Delta x \) from \( x \):

$$ f(x + \Delta x) \approx f(x) + \Delta x f'(x) $$

In our case, using Euler's method to approximate the value of \( g \) at a step \( \Delta t \) from \( t \) yields

$$ \begin{aligned} g(t + \Delta t) &\approx g(t) + \Delta t g'(t) \\ &= g(t) + \Delta t \big(\alpha g(t)(A - g(t))\big) \end{aligned} $$

along with the condition that \( g(0) = g_0 \).

Let \( t_i = i \cdot \Delta t \) where \( \Delta t = \frac{T}{N_t-1} \) where \( T \) is the final time our solver must solve for and \( N_t \) the number of values for \( t \in [0, T] \) for \( i = 0, \dots, N_t-1 \).

For \( i \geq 1 \), we have that

$$ \begin{aligned} t_i &= i\Delta t \\ &= (i - 1)\Delta t + \Delta t \\ &= t_{i-1} + \Delta t \end{aligned} $$

Now, if \( g_i = g(t_i) \) then

$$ \begin{equation} \begin{aligned} g_i &= g(t_i) \\ &= g(t_{i-1} + \Delta t) \\ &\approx g(t_{i-1}) + \Delta t \big(\alpha g(t_{i-1})(A - g(t_{i-1}))\big) \\ &= g_{i-1} + \Delta t \big(\alpha g_{i-1}(A - g_{i-1})\big) \end{aligned} \end{equation} \tag{12} $$

for \( i \geq 1 \) and \( g_0 = g(t_0) = g(0) = g_0 \).

Equation (12) could be implemented in the following way, extending the program that uses the network using Autograd:

# Assume that all function definitions from the example program using Autograd
# are located here.

if __name__ == '__main__':
    npr.seed(4155)

    ## Decide the vales of arguments to the function to solve
    Nt = 10
    T = 1
    t = np.linspace(0,T, Nt)

    ## Set up the initial parameters
    num_hidden_neurons = [100,50,25]
    num_iter = 1000
    lmb = 1e-3

    P = solve_ode_deep_neural_network(t, num_hidden_neurons, num_iter, lmb)

    g_dnn_ag = g_trial_deep(t,P)
    g_analytical = g_analytic(t)

    # Find the maximum absolute difference between the solutons:
    diff_ag = np.max(np.abs(g_dnn_ag - g_analytical))
    print("The max absolute difference between the solutions is: %g"%diff_ag)

    plt.figure(figsize=(10,10))

    plt.title('Performance of neural network solving an ODE compared to the analytical solution')
    plt.plot(t, g_analytical)
    plt.plot(t, g_dnn_ag[0,:])
    plt.legend(['analytical','nn'])
    plt.xlabel('t')
    plt.ylabel('g(t)')

    ## Find an approximation to the funtion using forward Euler

    alpha, A, g0 = get_parameters()
    dt = T/(Nt - 1)

    # Perform forward Euler to solve the ODE
    g_euler = np.zeros(Nt)
    g_euler[0] = g0

    for i in range(1,Nt):
        g_euler[i] = g_euler[i-1] + dt*(alpha*g_euler[i-1]*(A - g_euler[i-1]))

    # Print the errors done by each method
    diff1 = np.max(np.abs(g_euler - g_analytical))
    diff2 = np.max(np.abs(g_dnn_ag[0,:] - g_analytical))

    print('Max absolute difference between Euler method and analytical: %g'%diff1)
    print('Max absolute difference between deep neural network and analytical: %g'%diff2)

    # Plot results
    plt.figure(figsize=(10,10))

    plt.plot(t,g_euler)
    plt.plot(t,g_analytical)
    plt.plot(t,g_dnn_ag[0,:])

    plt.legend(['euler','analytical','dnn'])
    plt.xlabel('Time t')
    plt.ylabel('g(t)')

    plt.show()