For an \( N\times N \) matrix \( \mathbf{A} \) the following properties are all equivalent
- If the inverse of \( \mathbf{A} \) exists, \( \mathbf{A} \) is nonsingular.
- The equation \( \mathbf{Ax}=0 \) implies \( \mathbf{x}=0 \).
- The rows of \( \mathbf{A} \) form a basis of \( R^N \).
- The columns of \( \mathbf{A} \) form a basis of \( R^N \).
- \( \mathbf{A} \) is a product of elementary matrices.
- \( 0 \) is not eigenvalue of \( \mathbf{A} \).