Basic Matrix Features

For an \( N\times N \) matrix \( \mathbf{A} \) the following properties are all equivalent

  • If the inverse of \( \mathbf{A} \) exists, \( \mathbf{A} \) is nonsingular.
  • The equation \( \mathbf{Ax}=0 \) implies \( \mathbf{x}=0 \).
  • The rows of \( \mathbf{A} \) form a basis of \( R^N \).
  • The columns of \( \mathbf{A} \) form a basis of \( R^N \).
  • \( \mathbf{A} \) is a product of elementary matrices.
  • \( 0 \) is not eigenvalue of \( \mathbf{A} \).