Gaussian Elimination

Our actual \( 4\times 4 \) example reads after the first operation $$ \begin{bmatrix} a_{11}& a_{12} &a_{13}& a_{14}\\ 0& (a_{22}-\frac{a_{21}a_{12}}{a_{11}}) &(a_{23}-\frac{a_{21}a_{13}}{a_{11}}) & (a_{24}-\frac{a_{21}a_{14}}{a_{11}})\\ 0& (a_{32}-\frac{a_{31}a_{12}}{a_{11}})& (a_{33}-\frac{a_{31}a_{13}}{a_{11}})& (a_{34}-\frac{a_{31}a_{14}}{a_{11}})\\ 0&(a_{42}-\frac{a_{41}a_{12}}{a_{11}}) &(a_{43}-\frac{a_{41}a_{13}}{a_{11}}) & (a_{44}-\frac{a_{41}a_{14}}{a_{11}}) \\ \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \\ x_4 \\ \end{bmatrix} =\begin{bmatrix} y_1\\ w_2^{(2)}\\ w_3^{(2)} \\ w_4^{(2)}\\ \end{bmatrix}, $$ or $$ \begin{align} b_{11}x_1 +b_{12}x_2 +b_{13}x_3 + b_{14}x_4=&y_1 \nonumber \\ a^{(2)}_{22}x_2 + a^{(2)}_{23}x_3 + a^{(2)}_{24}x_4=&w^{(2)}_2 \nonumber \\ a^{(2)}_{32}x_2 + a^{(2)}_{33}x_3 + a^{(2)}_{34}x_4=&w^{(2)}_3 \nonumber \\ a^{(2)}_{42}x_2 + a^{(2)}_{43}x_3 + a^{(2)}_{44}x_4=&w^{(2)}_4, \nonumber \\ \tag{13} \end{align} $$