Iterative methods, Gauss-Seidel's method

Our \( 4\times 4 \) matrix problem $$ \begin{align} x_1^{(k+1)} =&(b_1-a_{12}x_2^{(k)} -a_{13}x_3^{(k)} - a_{14}x_4^{(k)})/a_{11} \nonumber \\ x_2^{(k+1)} =&(b_2-a_{21}x_1^{(k)} - a_{23}x_3^{(k)} - a_{24}x_4^{(k)})/a_{22} \nonumber \\ x_3^{(k+1)} =&(b_3- a_{31}x_1^{(k)} -a_{32}x_2^{(k)} -a_{34}x_4^{(k)})/a_{33} \nonumber \\ x_4^{(k+1)}=&(b_4-a_{41}x_1^{(k)} -a_{42}x_2^{(k)} - a_{43}x_3^{(k)})/a_{44}, \nonumber \end{align} $$ can be rewritten as $$ \begin{align} x_1^{(k+1)} =&(b_1-a_{12}x_2^{(k)} -a_{13}x_3^{(k)} - a_{14}x_4^{(k)})/a_{11} \nonumber \\ x_2^{(k+1)} =&(b_2-a_{21}x_1^{(k+1)} - a_{23}x_3^{(k)} - a_{24}x_4^{(k)})/a_{22} \nonumber \\ x_3^{(k+1)} =&(b_3- a_{31}x_1^{(k+1)} -a_{32}x_2^{(k+1)} -a_{34}x_4^{(k)})/a_{33} \nonumber \\ x_4^{(k+1)}=&(b_4-a_{41}x_1^{(k+1)} -a_{42}x_2^{(k+1)} - a_{43}x_3^{(k+1)})/a_{44}, \nonumber \end{align} $$ which allows us to utilize the preceding solution (forward substitution). This improves normally the convergence behavior and leads to the Gauss-Seidel method!